Ultra-broadband microfiber-coupled superconducting single-photon detector

Opt Express. 2019 Sep 2;27(18):25241-25250. doi: 10.1364/OE.27.025241.

Abstract

Broadband photon detectors are a key enabling technology for various applications such as spectrometers, light detection and ranging. In this work, we report on an ultra-broadband single-photon detector based on a microfiber (MF)-coupled superconducting nanowires structure operating in the spectral range from visible to near-infrared light. The MF-coupled superconducting nanowire single-photon detector (SNSPD) is formed by placing an MF on top of superconducting niobium nitride (NbN) nanowires, allowing ultra-broadband photon detection due to their nearly lossless transmission/absorption and nearly unity internal efficiency for ultra-broad waveband. The simulation results indicate that with optimal device structure, the optical absorption with efficiency > 90% can be realized over a wavelength range of 350 nm to 2150 nm. The fabricated MF-coupled SNSPD shows unparalleled broadband system detection efficiencies (SDEs) of more than 50% from 630 nm to 1500 nm. The SDEs reach 66% at 785 nm and 45% at 1550 nm. These results pave the way for ultra-broadband weak light detection with quantum-limit sensitivity.