Background: Restoring the orbital cavity integrity in orbital floor defects is a challenging issue due to the anatomical complexity of the floor's surface. This is a showcase for technical description of a novel "in house" rapid prototyping protocol aimed to customize implant for orbital floor reconstruction.
Methods: The authors present 4 cases to show our Computer-aided-design and Computer-aided-manufacturing digital workflow. The system was based on a 3D-printed press that; through a virtually designed mold, was used to conform a patient specific titanium mesh for orbital floor reconstruction.
Results: The merging procedure analysis by iPlan Cranial 3.0 (Brainlab, Munich, Germany) highlighted a 0.71 ± 0.23 mm (P <0.05) discrepancy in a point-to-point superimposition between the digital planned reconstruction and the real in vivo result.
Conclusions: The authors expect that this technique will reduce operative time and cost however further study and larger series may better define the applicability in everyday surgical practice.