Plasma phospholipid n-3 and n-6 polyunsaturated fatty acids in relation to cardiometabolic markers and gestational diabetes: A longitudinal study within the prospective NICHD Fetal Growth Studies

PLoS Med. 2019 Sep 13;16(9):e1002910. doi: 10.1371/journal.pmed.1002910. eCollection 2019 Sep.

Abstract

Background: Despite dietary recommendations of polyunsaturated fatty acids (PUFAs) for cardiometabolic health, n-3 and n-6 PUFAs and their interplay in relation to diabetes risk remain debated. Importantly, data among pregnant women are scarce. We investigated individual plasma phospholipid n-3 and n-6 PUFAs in early to midpregnancy in relation to subsequent risk of gestational diabetes mellitus (GDM).

Methods and findings: Within the National Institute of Child Health and Human Development (NICHD) Fetal Growth Studies-Singleton Cohort (n = 2,802), individual plasma phospholipid n-3 and n-6 PUFAs levels were measured at gestational weeks (GWs) 10-14, 15-26, 23-31, and 33-39 among 107 GDM cases (ascertained on average at GW 27) and 214 non-GDM controls. Conditional logistic regression was used, adjusting for major risk factors for GDM. After adjusting for covariates, individual n-3 eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) were inversely correlated with insulin-resistance markers, whereas individual n-6 dihomo-gamma-linolenic acid (DGLA) was positively correlated with insulin-resistance markers. At GW 15-26, a standard deviation (SD) increase in total n-3 PUFAs and individual n-3 DPA was associated with a 36% (adjusted odds ratio 0.64; 95% CI 0.42-0.96; P = 0.042) and 33% (0.67; 95% CI 0.45-0.99; P = 0.047) lower risk of GDM, respectively; however, the significance did not persist after post hoc false-discovery rate (FDR) correction (FDR-corrected P values > 0.05). Associations between total n-6 PUFAs and GDM were null, whereas associations with individual n-6 PUFAs were differential. Per SD increase, gamma-linolenic acid (GLA) at GWs 10-14 and DGLA at GWs 10-14 and 15-26 were significantly associated with a 1.40- to 1.95-fold higher risk of GDM, whereas docosatetraenoic acid (DTA) at GW 15-26 was associated with a 45% (0.55; 95% CI 0.37-0.83) lower risk of GDM (all FDR-corrected P values < 0.05). Null associations were observed for linoleic acid (LA) in either gestational window in relation to risk of GDM. Women with high (≥median) n-3 PUFAs and low (<median) n-6 PUFAs levels had a 64% (95% CI 0.14-0.95; P value = 0.039) lower risk of GDM versus women with low n-3 and high n-6 PUFAs. Limitations include the inability to distinguish between exogenous and endogenous influences on circulating PUFA levels and the lack of causality inherent in observational studies.

Conclusions: Our findings may suggest a potential role of primarily endogenously metabolized plasma phospholipid n-6 PUFAs including GLA, DGLA, and DTA in early to midpregnancy in the development of GDM. Null findings on primarily diet-derived n-3 EPA and DHA and n-6 LA do not provide strong evidence to suggest a beneficial role in prevention of GDM, although not excluding the potential benefit of EPA and DHA on glucose-insulin homeostasis given the inverse associations with insulin-resistance markers. Our findings highlight the importance of assessing individual circulating PUFAs to investigate their distinct pathophysiologic roles in glucose homeostasis in pregnancy.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adolescent
  • Adult
  • Biomarkers / blood
  • Blood Glucose / metabolism*
  • Case-Control Studies
  • Diabetes, Gestational / blood*
  • Diabetes, Gestational / diagnosis
  • Diabetes, Gestational / etiology
  • Fatty Acids, Omega-3 / blood*
  • Fatty Acids, Omega-6 / blood*
  • Female
  • Gestational Age
  • Humans
  • Insulin / blood
  • Insulin Resistance
  • Longitudinal Studies
  • Maternal Nutritional Physiological Phenomena*
  • Nutritional Status*
  • Phospholipids / blood*
  • Pregnancy
  • Prospective Studies
  • Risk Assessment
  • Risk Factors
  • Young Adult

Substances

  • Biomarkers
  • Blood Glucose
  • Fatty Acids, Omega-3
  • Fatty Acids, Omega-6
  • Insulin
  • Phospholipids