Nuclear glycogen was first documented in the early 1940s, but its role in cellular physiology remained elusive. In this study, we utilized pure nuclei preparations and stable isotope tracers to define the origin and metabolic fate of nuclear glycogen. Herein, we describe a key function for nuclear glycogen in epigenetic regulation through compartmentalized pyruvate production and histone acetylation. This pathway is altered in human non-small cell lung cancers, as surgical specimens accumulate glycogen in the nucleus. We demonstrate that the decreased abundance of malin, an E3 ubiquitin ligase, impaired nuclear glycogenolysis by preventing the nuclear translocation of glycogen phosphorylase and causing nuclear glycogen accumulation. Re-introduction of malin in lung cancer cells restored nuclear glycogenolysis, increased histone acetylation, and decreased growth of cancer cells transplanted into mice. This study uncovers a previously unknown role for glycogen metabolism in the nucleus and elucidates another mechanism by which cellular metabolites control epigenetic regulation.
Keywords: E3 ubiquitin ligase; EPM2B; Lafora disease; NHLRC1; glycogen; glycogen phosphorylase; histone acetylation; malin; non-small cell lung cancer; nuclear metabolism.
Copyright © 2019 Elsevier Inc. All rights reserved.