Time evolution of Symmetry-forbidden Raman lines activated by photorefractivity

Sci Rep. 2019 Sep 16;9(1):13408. doi: 10.1038/s41598-019-49801-x.

Abstract

Transmission Raman spectroscopy experiments were performed on iron doped congruent lithium niobate within two -in principle equivalent- configurations, namely Y(ZX)Y and Y(XZ)Y. While the former respects the Raman selection rules, the other configuration gives a time dependent spectrum that, after a transient time of several minutes, finally results in a mixture of expected and forbidden modes. This breaking of Raman selection rules is caused by the spontaneous conversion of a part of the ordinarily polarized pump beam into an extraordinarily polarized beam by photorefractive anisotropic self-scattering. A numerical modelling of the phenomenon is developed and fairly reproduces the time dependence of conversion energy.