Benchmarking Parametric and Machine Learning Models for Genomic Prediction of Complex Traits

G3 (Bethesda). 2019 Nov 5;9(11):3691-3702. doi: 10.1534/g3.119.400498.

Abstract

The usefulness of genomic prediction in crop and livestock breeding programs has prompted efforts to develop new and improved genomic prediction algorithms, such as artificial neural networks and gradient tree boosting. However, the performance of these algorithms has not been compared in a systematic manner using a wide range of datasets and models. Using data of 18 traits across six plant species with different marker densities and training population sizes, we compared the performance of six linear and six non-linear algorithms. First, we found that hyperparameter selection was necessary for all non-linear algorithms and that feature selection prior to model training was critical for artificial neural networks when the markers greatly outnumbered the number of training lines. Across all species and trait combinations, no one algorithm performed best, however predictions based on a combination of results from multiple algorithms (i.e., ensemble predictions) performed consistently well. While linear and non-linear algorithms performed best for a similar number of traits, the performance of non-linear algorithms vary more between traits. Although artificial neural networks did not perform best for any trait, we identified strategies (i.e., feature selection, seeded starting weights) that boosted their performance to near the level of other algorithms. Our results highlight the importance of algorithm selection for the prediction of trait values.

Keywords: GenPred; Genomic Prediction; Genomic selection; Shared Data Resources; artificial neural network; genotype-to-phenotype.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Benchmarking
  • Genomics / methods*
  • Genotype
  • Machine Learning*
  • Neural Networks, Computer
  • Phenotype
  • Plants / genetics*