Terrestrial (trees, shrubs) and marine (seaweeds and seagrasses) organisms act as carbon (C) sinks, but the role of benthic suspension feeders in this regard has been largely neglected so far. Gorgonians are one of the most conspicuous inhabitants of marine animal forests (mainly composed of sessile filter feeders); their seston capture rates influence benthic-pelagic coupling processes and they act as C sinks immobilizing carbon in their long-living structures. Three gorgonian species (Paramuricea clavata, Eunicella singularis and Leptogorgia sarmentosa) were studied coupling data of population size structure, biomass and spatial distribution in a NW Mediterranean area (Cap de Creus, Spain) with feeding, respiration and growth rates. In the study area, we calculated that P. clavata sequestered 0.73 ± 0.71 g C m-2 year-1, E. singularis 0.73 ± 0.89 g C m-2 year-1 and L. sarmentosa 0.03 ± 0.02 g C m-2 year-1. To our knowledge, this is the first attempt to calculate the importance as C sinks of gorgonian species that we consider as a starting point to estimate the importance of marine animal forests in C sequestration, and to ensure appropriate management and protection especially in areas and at depths where they are concentrated.