A matter of taste: Spatial and ontogenetic variations on the trophic ecology of the tiger shark at the Galapagos Marine Reserve

PLoS One. 2019 Sep 20;14(9):e0222754. doi: 10.1371/journal.pone.0222754. eCollection 2019.

Abstract

Sharks are top predators across ocean food webs and have a major ecological role in marine ecosystems. Investigating the trophic ecology of this group of species is thus essential to understand ecosystem functioning and inform specific management actions aimed at shark conservation. The Galapagos Islands represent one of the last ocean wildernesses, where populations of sharks and other top marine predators come close to a pristine status. Here we provide the first study on the trophic ecology of the tiger shark (Galeocerdo cuvier) within the Galapagos Marine Reserve (GMR), using a combination of stable isotope analysis, satellite tracking, and passive acoustic telemetry to investigate ontogenetic and spatial variations at two regions. The mean estimated δ13C and δ15N at Isabela island (western region) were -13.9 ± 0.5‰ and 13.7 ± 0.7‰; and for Santa Cruz island (central region) were -13.8 ± 0.3‰ and 13.4 ± 0.7‰, respectively. Green sea turtles (Chelonia mydas) were the main prey item for large tiger sharks (>280 cm TL), while smaller sharks mainly fed on squid and pelagic fish. Tiger sharks exhibited a high degree of philopatry around green sea-turtle nesting areas, with the majority of sharks detected around green sea-turtle nesting areas for at least 10 months after their capture date, and some individuals were even present during the entire three-year study period. Although we did not report statistically significant differences between the two regions, isotopic and electronic tagging data suggest that tiger sharks in the Galapagos could be segregated into specific populations separated by geographical scales of <100 km. The high productivity of the archipelago, along with the protection from industrial fishing granted by the GMR, result in abundant and predictable sources of prey. This high food abundance, combined with the presence of suitable habitats throughout the tiger shark life cycle, might result in a reduction of migratory behaviours when compared to movement patterns of tiger sharks in other ocean basins. Additional studies using genetic tools could provide further evidence on the presence of separate management units, as it has been recently revealed for other shark species inhabiting the GMR.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Migration / physiology*
  • Animals
  • Carbon Isotopes / metabolism
  • Ecology / methods*
  • Ecosystem*
  • Ecuador
  • Female
  • Food Chain*
  • Geography
  • Islands
  • Male
  • Marine Biology / methods
  • Nitrogen Isotopes / metabolism
  • Predatory Behavior / physiology*
  • Sharks / physiology*
  • Taste
  • Telemetry / methods

Substances

  • Carbon Isotopes
  • Nitrogen Isotopes

Grants and funding

This study was supported by IWC Schaffhausen (http://www.iwc.com/en/), The Helmsley Charitable Trust (https://helmsleytrust.org/), National Geographic Pristine Seas (https://www.nationalgeographic.org/projects/pristine-seas/) and OCEARCH (www.ocearch.org) provided financial support for the acquisition of equipment, laboratory analysis, field costs and/or staff time. These funds were granted to the Charles Darwin Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.