Electronic and spin delocalization in a switchable trinuclear triphenylene trisemiquinone bridged Ni3 complex

Chem Commun (Camb). 2019 Oct 10;55(82):12336-12339. doi: 10.1039/c9cc05183j.

Abstract

A trinuclear triphenylene trisemiquinone complex containing paramagnetic NiII is obtained under ambient conditions from the reaction of deprotonated tricatecholate hexahydroxytriphenylene (H6HHTP) with NiII capped with a trispyrazolyl borate tridentate ligand. The magnetic and EPR data are consistent with delocalization of the electronic spin over the three NiII species. The two-electron reduced complex shows an EPR spectrum corresponding to a S = 1/2 species due to a large antiferromagnetic coupling between the radical and only one of the NiII ions highlighting the localization of the electronic spin. No EPR signal is observed for the one- and three-electron reduced species consistent with the closed shell of the bridging ligand.