Inherent distortions affect the spatial geometry of optical coherence tomography (OCT) images and consequently the foveal pit dimensions. Distortion correction provides an accurate anatomical representation of the retinal shape. A novel approach that automatically extracts foveal pit metrics from distortion-corrected OCT images using a sum of Gaussian function is presented. Foveal width, depth and slope were determined in 292 eyes with low fitting errors and high repeatability. Comparisons to undistorted scans revealed significant differences. To conclude, the internal OCT distortions affect the measurements of the foveal pit with their correction providing further insights into the role of foveal morphology in retinal pathologies and refractive development.
© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.