Pathogens of Dikerogammarus haemobaphes regulate host activity and survival, but also threaten native amphipod populations in the UK

Dis Aquat Organ. 2019 Oct 2;136(1):63-78. doi: 10.3354/dao03195.

Abstract

Dikerogammarus haemobaphes is a non-native amphipod in UK freshwaters. Studies have identified this species as a low-impact invader in the UK, relative to its cousin Dikerogammarus villosus. It has been suggested that regulation by symbionts (such as Microsporidia) could explain this difference in impact. The effect of parasitism on D. haemobaphes is largely unknown. This was explored herein using 2 behavioural assays measuring activity and aggregation. First, D. haemobaphes were screened histologically post-assay, identifying 2 novel viruses (D. haemobaphes bi-facies-like virus [DhbflV], D. haemobaphes bacilliform virus [DhBV]), Cucumispora ornata (Microsporidia), Apicomplexa, and Digenea, which could alter host behaviour. DhBV infection burden increased host activity, and C. ornata infection reduced host activity. Second, native invertebrates were collected from the invasion site at Carlton Brook, UK, and tested for the presence of C. ornata. PCR screening identified that Gammarus pulex and other native invertebrates were positive for C. ornata. The host range of this parasite, and its impact on host survival, was additionally explored using D. haemobaphes, D. villosus, and G. pulex in a laboratory trial. D. haemobaphes and G. pulex became infected by C. ornata, which also lowered survival rate. D. villosus did not become infected. A PCR protocol for DhbflV was also applied to D. haemobaphes after the survival trial, associating this virus with decreased host survival. In conclusion, D. haemobaphes has a complex relationship with parasites in the UK environment. C. ornata likely regulates populations by decreasing host survival and activity, but despite this benefit, the parasite threatens susceptible native wildlife.

Keywords: Behaviour; Cucumispora; Emerging disease; Pathogen profile; Population regulation; Virus; Wildlife pathogen.

MeSH terms

  • Amphipoda / parasitology*
  • Amphipoda / virology*
  • Animals
  • Host-Parasite Interactions
  • Microsporidia
  • Parasites / pathogenicity*
  • Trematoda
  • United Kingdom