The catalytic activity of 2H-MoS2 is retarded by the deficiency in active sites, inferior intrinsic activity, and slow electron transfer kinetics. However, the strategies to concurrently resolve these issues have been challenging and rarely reported. Herein, we successfully endow MoS2 with exceptional acidic HER performance by concurrently doping nitrogen and metal atoms into the basal plane of MoS2. The experimental results reveal that the N dopant that induces the intervalence charge transfer between two ions (Mo4+/Mo3+) and the atoms rearrangement can enable the successful synthesis of 1T MoS2 on reduced graphene oxides, which can concurrently increase the active-site density and facilitate the charge transfer from the substrate to the catalyst active sites. The spontaneous doping of metal cation atoms further improves the intrinsic activity of MoS2 by creating more sulfur vacancy sites and tailoring the energy level matching. The optimized electrocatalyst exhibited unprecedented activity and stability for HER with a low overpotential of 143 mV at 150 mA cm-2 and a high exchange current density of 1 mA cm-2. Therefore, our work opens up possibility to manipulate the MoS2 catalytic performance to rival Pt, which is of significant importance to both fundamental study and industry applications.
Keywords: electron paramagnetic resonance (EPR); energy level matching; hydrogen evolution reaction (HER); interface heteroatom doping; molybdenum disulfide (MoS2).