Successful Derivation of an Induced Pluripotent Stem Cell Line from a Genetically Nonpermissive Enhanced Green Fluorescent Protein-Transgenic FVB/N Mouse Strain

Cell Reprogram. 2019 Oct;21(5):270-284. doi: 10.1089/cell.2019.0019.

Abstract

The embryonic stem cell line derivation from nonpermissive mouse strains is a challenging and highly inefficient process. The cellular reprogramming strategy provides an alternative route for generating pluripotent stem cell (PSC) lines from such strains. In this study, we successfully derived an enhanced green fluorescent protein (EGFP)-transgenic "N9" induced pluripotent stem cell (iPS cell, iPSC) line from the FVB/N strain-derived mouse embryonic fibroblasts (MEFs). The exposure of MEFs to human OCT4, SOX2, KLF4, and c-MYC (OSKM) transgenes via lentiviral transduction resulted in complete reprogramming. The N9 iPS cell line demonstrated all the criteria of a typical mouse PSC line, including normal colony morphology and karyotype (40,XY), high replication and propagation efficiencies, expression of the pluripotency-associated genes, spontaneous differentiation to three germ lineage-derived cell types, and robust potential of chimeric blastocyst formation. Taken together, using human OSKM genes for transduction, we report, for the first time, the successful derivation of an EGFP-expressing iPS cell line from a genetically nonpermissive transgenic FVB/N mouse. This cell line could provide opportunities for designing protocols for efficient derivation of PSC lines from other nonpermissive strains and developing mouse models of human diseases.

Keywords: differentiation; enhanced green fluorescent protein; induced pluripotent stem cells; nonpermissive; reprogramming; transgenic.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Lineage
  • Cells, Cultured
  • Embryo, Mammalian / cytology*
  • Embryo, Mammalian / metabolism
  • Female
  • Fibroblasts / cytology*
  • Fibroblasts / metabolism
  • Green Fluorescent Proteins / genetics
  • Green Fluorescent Proteins / metabolism*
  • Induced Pluripotent Stem Cells / cytology*
  • Induced Pluripotent Stem Cells / metabolism
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors / genetics
  • Kruppel-Like Transcription Factors / metabolism
  • Male
  • Mice
  • Mice, Transgenic
  • Octamer Transcription Factor-3 / genetics
  • Octamer Transcription Factor-3 / metabolism
  • Proto-Oncogene Proteins c-myc / genetics
  • Proto-Oncogene Proteins c-myc / metabolism
  • SOXB1 Transcription Factors / genetics
  • SOXB1 Transcription Factors / metabolism
  • Teratoma / genetics
  • Teratoma / metabolism
  • Teratoma / pathology*

Substances

  • KLF4 protein, human
  • Klf4 protein, mouse
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors
  • MYC protein, human
  • Octamer Transcription Factor-3
  • POU5F1 protein, human
  • Proto-Oncogene Proteins c-myc
  • SOX2 protein, human
  • SOXB1 Transcription Factors
  • enhanced green fluorescent protein
  • Green Fluorescent Proteins