Inhaled carbon monoxide (CO) displaces oxygen from hemoglobin, reducing the capacity of blood to carry oxygen. Current treatments for CO-poisoned patients involve administration of 100% oxygen; however, when CO poisoning is associated with acute lung injury secondary to smoke inhalation, burns, or trauma, breathing 100% oxygen may be ineffective. Visible light dissociates CO from hemoglobin. We hypothesized that the exposure of blood to visible light while passing through a membrane oxygenator would increase the rate of CO elimination in vivo. We developed a membrane oxygenator with optimal characteristics to facilitate exposure of blood to visible light and tested the device in a rat model of CO poisoning, with or without concomitant lung injury. Compared to ventilation with 100% oxygen, the addition of extracorporeal removal of CO with phototherapy (ECCOR-P) doubled the rate of CO elimination in CO-poisoned rats with normal lungs. In CO-poisoned rats with acute lung injury, treatment with ECCOR-P increased the rate of CO removal by threefold compared to ventilation with 100% oxygen alone and was associated with improved survival. Further development and adaptation of this extracorporeal CO photo-removal device for clinical use may provide additional benefits for CO-poisoned patients, especially for those with concurrent acute lung injury.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.