Few studies have examined systemic mitochondrial function in conjunction with brain imaging in human immunodeficiency virus (HIV) disease. Oxidative phosphorylation enzyme protein levels of peripheral blood mononuclear cells were measured in association with neuroimaging indices in 28 HIV+ individuals. T1-weighted magnetic resonance imaging yielded volumes of seven brain regions of interest; diffusion tensor imaging determined fractional anisotropy (FA) and mean diffusivity (MD) in the corpus callosum (CC). Higher nicotinamide adenine dinucleotide dehydrogenase levels correlated with lower volumes of thalamus (p = .005) and cerebral white matter (p = .049) and, in the CC, with lower FA (p = .011, body; p = .005, genu; p = .009, total CC) and higher MD (p = .023, body; p = .035, genu; p = .019, splenium; p = .014, total CC). Greater cytochrome c oxidase levels correlated with lower thalamic (p = .034) and cerebellar gray matter (p = .021) volumes. The results indicate that systemic mitochondrial cellular bioenergetics are associated with brain health in HIV.
Keywords: HIV; brain; mitochondria; oxidative phosphorylation; oxidative stress.