Fluorescence visualization (FV) in the near-infrared (NIR) window promises to break through the signal-to-background ratio (SBR) bottleneck of traditional visible-light-driven FV methods. However, straightforward NIR-FV has not been realized, owing to the lack of methods to readily transduce NIR responses into instrument-free, naked eye-recognizable outputs. Now, an initiation-input-transduction platform comprising a well-designed NIR fluorophore as the signal initiator and lanthanide-doped nanocrystals as the transducer for facile NIR-FV is presented. The analyte-induced off-on NIR signal serves as a sensitizing switch of transducer visible luminescence for naked-eye readout. The design is demonstrated for portable, quantitative detection of phosgene with significantly improved SBR and sensitivity. By further exploration of initiators, this strategy holds promise to create advanced NIR-FV probes for broad sensing applications.
Keywords: NIR fluorescence response; anti-Stokes emission; naked-eye readout; phosgene; visualization detection.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.