Vibrio harveyi is a major bacterial pathogen that causes fatal vibriosis in Chinese tongue sole (Cynoglossus semilaevis), resulting in massive mortality in the farming industry. However, the molecular mechanisms of C. semilaevis response to V. harveyi infection are poorly understood. Here, we performed transcriptomic analysis of C. semilaevis, comparing resistant and susceptible families in response to V. harveyi challenge (CsRC and CsSC) and control conditions (CsRU and CsSU). RNA libraries were constructed using 12 RNA samples isolated from three biological replicates of the four groups. We performed transcriptome sequencing on an Illumina HiSeq platform, and generating a total of 1,095 million paired-end reads, with the number of clean reads per library ranging from 75.27 M to 99.97 M. Through pairwise comparisons among the four groups, we identified 713 genes exhibiting significant differences at the transcript level. Furthermore, the expression levels were validated by real-time qPCR. Our results provide a valuable resource and new insights into the immune response to V. harveyi infection.