The wingless and integration site growth factor-5a (Wnt5a) is a ligand of the receptor tyrosine kinase-like orphan receptor-1 (ROR1). Because both Wnt5a and ROR1 are expressed in circulating chronic lymphocytic leukemia (CLL) cells, and because in other cell types, STAT3, which is constitutively activated in CLL, induces Wnt5a signaling, we wondered whether STAT3 induces the expression of Wnt5a in CLL cells. Sequence analysis detected four putative STAT3 binding sites in close proximity to the Wnt5a gene promoter's start codon. Chromatin immunoprecipitation and EMSA revealed that STAT3 binds to the Wnt5a gene promoter, and a luciferase assay showed that STAT3 activates the Wnt5a gene. Additionally, transfection of peripheral blood CLL cells with STAT3 short hairpin RNA downregulated Wnt5a mRNA and protein levels, suggesting that STAT3 binds to the Wnt5a gene promoter and induces the expression of Wnt5a in CLL cells. Flow cytometry and confocal microscopy determined that both Wnt5a and its receptor ROR1 are coexpressed on the surface of CLL cells, and Western immunoblotting showed an inverse correlation between Wnt5a and ROR1 protein levels, implying that, regardless of CLL cells' ROR1 levels, blocking the interaction between Wnt5a and ROR1 might be beneficial to patients with CLL. Indeed, transfection of CLL cells with Wnt5a small interfering RNA reduced Wnt5a mRNA and protein levels and significantly increased the spontaneous apoptotic rate of CLL cells. Taken together, our data unravel an autonomous STAT3-driven prosurvival circuit that provides circulating CLL cells with a microenvironment-independent survival advantage.
Copyright © 2019 by The American Association of Immunologists, Inc.