Blood-based protein biomarkers may be an attractive option for early detection of colorectal cancer (CRC). Here, we used a two-stage design to measure 275 protein markers by proximity extension assay (PEA), first in plasma samples of a discovery set consisting of 98 newly diagnosed CRC cases and 100 age- and gender-matched controls free of neoplasm at screening colonoscopy. An algorithm predicting the presence of early- or late-stage CRC was derived by least absolute shrinkage and selection operator regression with .632+ bootstrap method, and the algorithms were then validated using PEA again in an independent validation set consisting of participants of screening colonoscopy with and without CRC (n = 56 and 102, respectively). Three different signatures for all-, early-, and late-stage CRC consisting of 9, 12, and 11 protein markers were obtained in the discovery set with areas under the curves (AUCs) after .632 + bootstrap adjustment of 0.92, 0.91, and 0.96, respectively. External validation among participants of screening colonoscopy yielded AUCs of 0.76 [95% confidence interval (95% CI), 0.67-0.84], 0.75 (95% CI, 0.62-0.87), and 0.80 (95% CI, 0.68-0.89) for all-, early-, and late-stage CRC, respectively. Although the identified protein markers are not competitive with the best available stool tests, these proteins may contribute to the development of powerful blood-based tests for CRC early detection in the future.
Keywords: colorectal cancer; diagnostic biomarkers; early detection; proximity extension assay; screening; sensitivity and specificity.
© 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.