Moyamoya disease (MMD) is a rare cerebrovascular disorder characterized by occlusion of bilateral internal carotid and intracerebral arteries with the compensatory growth of fragile small vessels. MMD patients develop recurrent infarctions in the basal ganglia and subcortical regions. Symptoms include transient ischemic attack or stroke, seizures, and headaches, which may occur suddenly or in a stepwise progression. Mutations in Ring Finger Protein 213 (RNF213), a Zinc ring finger protein, have been identified in some MMD patients but the etiology of MMD is still largely unknown. To gain insight into the pathophysiology of MMD, we characterized the impact of the RNF213 mutations on plasma protein and RNA profiles. Isobaric tags for relative and absolute quantitation and proximity extension assay were used to characterize the plasma proteome. Next generation sequencing-based small RNAseq was used to analyze the cell-free small RNAs in whole plasma and RNA encapsulated in extracellular vesicles. The changes of miRNAs and proteins identified are associated with signaling processes including angiogenesis and immune activities which may reflect the pathology and progression of MMD.
Keywords: RNAseq; biomarker; cerebrovascular disorder; extracellular vesicle; moyamoya disease.