Long-term exposure to fine particulate matter (PM2.5) may cause or exacerbate many diseases, including respiratory inflammation. However, the full mechanism is not yet fully understood. The newly discovered long chain non-coding RNA, though unable to encode proteins, regulates multiple life activities and participates in the development of inflammation. In this study, we set up a cell inflammation model by using normal bronchial 16HBE cells exposed to PM2.5. High-throughput sequencing, as well as real-time fluorescent quantitative PCR detection and validation, was performed on the inflamed cells to evaluate the expression level of long chain noncoding RNA that helped us to identify the LncRNA LOC101927514. Inhibiting LncRNA LOC101927514 expression by RNAi, reflected in a reduction in inflammation, is driven by PM2.5. In addition, we identify LncRNA LOC101927514 to be located within the nucleus and binds to STAT3, altering the inflammatory state of the cells and IL6 and IL8 release. This study identifies that LncRNA LOC101927514 is a new potential target for future treatment of the inflammatory response activated by PM2.5 in the respiratory system.
Keywords: Inflammation; LncRNA; PM(2.5).
Copyright © 2019. Published by Elsevier B.V.