Polymer coatings with a combined competence of strong bonding to diverse substrates, broad liquid repellency, and readily damage healing are in substantial demand in a range of applications. In this work, we develop damage-healable, oil-repellent supramolecular silicone (DOSS) coatings to harvest abovementioned properties by molecular engineering siloxane oligomers that can self-assemble onto coated substrates via multivalent hydrogen bonding. In addition to the readily damage-healing properties provided by reversible association/dissociation of hydrogen bonding motifs, the unique molecular configuration of the siloxane oligomers on coated substrates enables both robust repellency to organic liquids and strong bonding to various substrates including metals, plastics, and even Teflon. We envision that not only DOSS coatings can be applied in a range of energy, environmental, and biomedical applications that require long-term services in harsh environmental conditions but also the design strategy of the oligomers can be adopted in the development of supramolecular materials with desirable multifunctionality.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).