A protein from rat kidney was characterized that had several properties common to a multigene family of fatty acid binding proteins identified in other tissues. The putative kidney fatty acid binding protein (FABP) was purified from the soluble fraction of kidney homogenates using gel filtration and ion exchange chromatography. It was relatively abundant, had an apparent molecular mass of 15.5 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, bound equimolar amounts of oleic acid, and could be distinguished from other FABPs on the basis of size, amino acid composition, and tissue distribution. Polyclonal antibodies to kidney FABP were obtained and used to show that only kidney contained the 15.5-kDa protein, although the antibodies also recognized a slightly larger and less abundant protein in kidney that also was present in bladder. Rat kidney also contained heart FABP, and the properties of both FABPs in rat kidney were compared. The distribution of both proteins within the kidney differed, with kidney FABP being localized almost exclusively within the cortex, whereas heart FABP was found both in cortex and medulla. Kidney FABP was expressed developmentally after the neonatal period, whereas heart FABP was present in both neonatal and adult kidney at comparable amounts. Hypertension induced by mineralocorticoids or infusion of angiotensin II caused a marked suppression of kidney FABP expression, whereas amounts of heart FABP in kidney were unchanged. The studies showed that rat kidney contains at least two FABPs, and that these proteins are differentially regulated, suggesting that functional differences between the proteins may exist.