Introduction: Total body irradiation (TBI)-based conditioning is the standard of care in the treatment of acute lymphoblastic leukemia (ALL) that requires allogeneic hematopoietic stem cell transplantation (HSCT). However, TBI is known to be associated with an increased risk of late effects, and therefore, non-TBI regimens have also been utilized successfully. A recent study showed that patients that were next-generation sequencing-minimal residual disease (NGS-MRD) negative prior to allogeneic HSCT had a very low risk of relapse, and perhaps could avoid exposure to TBI without compromising disease control. We examined outcomes at our institution in patients that received a TBI or non-TBI regimen, as well as explored the impact of NGS-MRD status in predicting risk of relapse post transplant.
Procedures: This retrospective analysis included 57 children and young adults with ALL that received their first myeloablative allogeneic HSCT from 2012 to 2017 at the University of California San Francisco. Our primary endpoint was the cumulative incidence of relapse at 3 years post transplant.
Results: We demonstrated similar cumulative incidence of relapse for patients treated with either a TBI or non-TBI conditioning regimen, while NGS-MRD positivity prior to transplant was highly predictive of relapse. The presence of acute graft-versus-host disease was associated with decreased relapse rates, particularly among patients that received a TBI conditioning regimen and patients that were NGS-MRD positive prior to HSCT.
Conclusions: Our data suggest that the decision to use either a TBI or non-TBI regimens in ALL should depend on NGS-MRD status, with conditioning regimens based on TBI reserved for patients that cannot achieve NGS-MRD negativity prior to allogeneic HSCT.
Keywords: acute lymphoblastic leukemia; allogeneic transplantation; conditioning regimen; next-generation sequencing.
© 2019 Wiley Periodicals, Inc.