Separating distinct structures of multiple macromolecular assemblies from cryo-EM projections

J Struct Biol. 2020 Jan 1;209(1):107416. doi: 10.1016/j.jsb.2019.107416. Epub 2019 Nov 11.

Abstract

Single particle analysis for structure determination in cryo-electron microscopy is traditionally applied to samples purified to near homogeneity as current reconstruction algorithms are not designed to handle heterogeneous mixtures of structures from many distinct macromolecular complexes. We extend on long established methods and demonstrate that relating two-dimensional projection images by their common lines in a graphical framework is sufficient for partitioning distinct protein and multiprotein complexes within the same data set. The feasibility of this approach is first demonstrated on a large set of synthetic reprojections from 35 unique macromolecular structures spanning a mass range of hundreds to thousands of kilodaltons. We then apply our algorithm on cryo-EM data collected from a mixture of five protein complexes and use existing methods to solve multiple three-dimensional structures ab initio. Incorporating methods to sort single particle cryo-EM data from extremely heterogeneous mixtures will alleviate the need for stringent purification and pave the way toward investigation of samples containing many unique structures.

Keywords: Classification; Cryo-electron microscopy; Heterogeneous mixtures; Image processing; Methods development; Multiple structures.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cryoelectron Microscopy*
  • Image Processing, Computer-Assisted*
  • Imaging, Three-Dimensional
  • Macromolecular Substances / chemistry
  • Macromolecular Substances / ultrastructure*
  • Multiprotein Complexes / chemistry
  • Multiprotein Complexes / ultrastructure*

Substances

  • Macromolecular Substances
  • Multiprotein Complexes