Nitrogen isotope differences between atmospheric nitrate and corresponding nitrogen oxides: A new constraint using oxygen isotopes

Sci Total Environ. 2020 Jan 20:701:134515. doi: 10.1016/j.scitotenv.2019.134515. Epub 2019 Nov 14.

Abstract

Tracking of reactive nitrogen (N) sources is important for the effective mitigation of N emissions. By combining the N and oxygen (O) isotopes of atmospheric NO3-, stable isotope mixing models were recently applied to evaluate the relative contributions of major NOx sources. However, it has long been unresolved how to accurately constrain the δ15N differences between NO3- and corresponding NOx(NO2→NO3-) values). Here, we first incorporated the HC oxidation (NO2 → NO3-) pathway by using Δ17O values to evaluate the ε(NO2→NO3-) values, performed on NO3- in PM2.5 collected during the day and at night from January 4-13, 2015 at an urban site in Beijing. We found that the Δ17O-based ε values (ε17O-based(NO2→NO3-)) (15.6 ± 7.4‰) differed distinctly from δ18O-based ε values (ε18O-based(NO2→NO3-)) (33.0 ± 9.5‰) so did not properly incorporate the isotopic effects of the HC oxidation (NO2 → NO3-) pathway. Based on the ε(NO2→NO3-) values, δ15N values of NOx from coal combustion (CC), vehicle exhausts (VE), biomass burning (BB), and the microbial N cycle (MC), as well as NO3- in PM2.5, we further quantified the source contributions by using Stable Isotope Analysis in R (the SIAR model). We found that the respective fractional contributions of CC-NOx and MC-NOx were underestimated by 64% and were overestimated by 216% by using ε18O-based(NO2→NO3-) values. We concluded that the new ε17O-based(NO2→NO3-) values reduced uncertainties in contribution analysis and the evaluation method for atmospheric NO3- sources.

Keywords: Isotopic fractionation; Nitrate aerosol; Nitrogen isotopes; Oxygen isotopes; Source apportionment.