Secretagogin Regulates Insulin Signaling by Direct Insulin Binding

iScience. 2019 Nov 22:21:736-753. doi: 10.1016/j.isci.2019.10.066. Epub 2019 Nov 2.

Abstract

Secretagogin (SCGN) is a β-cell enriched, secretory/cytosolic Ca2+-binding protein with unknown secretory regulation and functions. Recent findings suggest that SCGN deficiency correlates with compromised insulin response and diabetes. However, the (patho)physiological SCGN-insulin nexus remains unexplored. We here report that SCGN is an insulin-interacting protein. The protein-protein interaction between SCGN and insulin regulates insulin stability and increases insulin potency in vitro and in vivo. Mutagenesis studies suggest an indispensable role for N-terminal domain of SCGN in modulating insulin stability and function. SCGN supplementation in diabetogenic-diet-fed mice preserves physiological insulin responsiveness while relieving obesity and cardiovascular risk. SCGN-insulin interaction mediated alleviation of hyperinsulinemia by increased insulin internalization, which translates to reduced body fat and hepatic lipid accumulation, emerges as a plausible mechanism for the preservation of insulin responsiveness. These findings establish SCGN as a functional insulin-binding protein (InsBP) with therapeutic potential against diabetes.

Keywords: Diabetology; Endocrinology; Molecular Interaction; Specialized Functions of Cells.