Intensive use of chemical acaricides for the control of cattle ticks (Rhipicephalus microplus) has led to the development of multiple acaricide resistance in Colombia. The present study aimed to characterize, using toxicological bioassays and molecular biology techniques, the resistance profile of a tick strain isolated from the Arauca state, Northeast Colombia. Commercial acaricides were used in adult immersion tests to determine its in vitro efficacies. Deltamethrin showed very low activity (4-7.3%), a mixture of cypermethrin and chlorpyrifos had intermediate efficacy (64-75.2%), and ethion presented the highest activity (88.5-100%). A colony (Arauquita strain) was established and larval immersion tests confirmed high resistance level to deltamethrin (241-fold) and susceptibility to ivermectin. A quantitative polymerase chain reaction-high resolution melt technique was used to identify single nucleotide polymorphisms (SNPs) in the para-sodium channel gene. All of the genotyped individuals were mutant, presenting one (n = 7), two (n = 7) or three (n = 9) SNPs previously associated with pyrethroid resistance. Sequencing revealed a novel mutation (F712L), that was found for the first time in R. microplus ticks from South America. This is the first description of mutations associated with pyrethroid resistance in R. microplus from Colombia. The acaricide resistance pattern found in the Arauquita strain is similar to other parts of Colombia.
Keywords: Bioassays; Colombia; Rhipicephalus microplus; deltamethrin; resistance.
Published 2019. This article is a U.S. Government work and is in the public domain in the USA.