Different approaches have been studied in both preclinical and clinical settings to develop cell-based therapies and/or engineered cell-based therapies to better integrate grafts with the host. In these techniques, much attention is addressed to the use of adult stem cells such as mesenchymal stem cells (MSCs), but identifying and obtaining sufficient numbers of therapeutic cells, and the right route of administration, is often a challenge. In this study, we tested the feasibility of encapsulating human amnion-derived MSCs (hAMSCs) in a semipermeable and biocompatible fiber as a new approach for regenerative medicine. Our data showed that hAMSCs aggregated in the device constitutes an effective system for enhancing, or at least for maintaining, the paracrine activity of these cells in order to better promote tissue regeneration in an immune isolated state. In our new experimental approach, the hAMSCs retained their therapeutic potential, as shown by both the production of specific immunomodulatory/angiogenic factors and immunomodulatory and angiogenic ability observed in vitro. Unlike cell infusion methods, the use of encapsulated-cells leads to minimally invasive approaches, avoiding a direct interaction with the host. Therefore, the potentiality of an allograft or xenograft without the need for immunosuppression, and the lack of tumorigenesis is very intriguing.
Keywords: Angiogenesis; Catheter-like device; Immunomodulation; Paracrine effects; Placenta-derived stromal/stem cells; Regenerative medicine.
Copyright © 2019 Elsevier Inc. All rights reserved.