The toxicity of zinc oxide nanoparticles (ZnO NPs) has been addressed in several studies; however, their effect on the mammalian group, even at environmentally relevant concentrations, remains poorly understood. The aims of the present study are to expose female Swiss mice to ZnO NP concentrations commonly faced by mammals who enter aquatic systems to perform different ecological functions and to assess the possible effects of such particles on their behavior. The test animals were placed in water added with ZnO NPs for 3 min, 2 times/day, for 21 days. Two experimental groups were set, NP1x, composed of animals subjected to ZnO NP concentration of 760 μg/L; and NP50x (control), which encompassed animals subjected to 38,000 μg/L. Based on field test results (OF), the contact with NPs did not induce locomotor deficits or anxiogenic and anxiolytic effect on the animal models. However, models exposed to NPs were not able to recognize the predatory threat posed by the presence of Pantherophis guttatus and Arapaima gigas; on the other hand, animals in the control group, who were not exposed to ZnO NPs, did not present antipredator behavioral response deficit. Furthermore, mice exposed to NPs were unable to distinguish real predators from plastic copies, and it suggests antipredator behavioral response deficit. High Zn concentrations in blood, liver, brain and skin samples are associated with deficit caused by the exposure to ZnO NPs. To the best of our knowledge, the current study is in the first to evidence that ZnO NPs induce changes in antipredator behavioral responses, even under ephemeral conditions and at low concentrations. However, the exposure to ZnO NPs can be a risk to the health of the assessed individuals and to the dynamics of their populations if the present antipredator behavioral response test results are extrapolated to the ecological context.
Keywords: Environmental concentrations; Environmental toxicology; Freshwater; Mammals; Nanotoxicology.
Copyright © 2018 Elsevier B.V. All rights reserved.