Background: E-cadherin has been awarded a key role in the aetiology of both sporadic and hereditary forms of gastric cancer. In this study, we aimed to identify molecular interactors that influence the expression and function of E-cadherin associated to cancer.
Methods: A data mining approach was used to predict stomach-specific candidate genes, uncovering S100P as a key candidate. The role of S100P was evaluated through in vitro functional assays and its expression was studied in a gastric cancer tissue microarray (TMA).
Results: S100P was found to contribute to a cancer pathway dependent on the context of E-cadherin function. In particular, we demonstrated that S100P acts as an E-cadherin positive regulator in a wild-type E-cadherin context, and its inhibition results in decreased E-cadherin expression and function. In contrast, S100P is likely to be a pro-survival factor in gastric cancer cells with loss of functional E-cadherin, contributing to an oncogenic molecular program. Moreover, expression analysis in a gastric cancer TMA revealed that S100P expression impacts negatively among patients bearing Ecad- tumours, despite not being significantly associated with overall survival on its own.
Conclusions: We propose that S100P has a dual role in gastric cancer, acting as an oncogenic factor in the context of E-cadherin loss and as a tumour suppressor in a functional E-cadherin setting. The discovery of antagonist effects of S100P in different E-cadherin contexts will aid in the stratification of gastric cancer patients who may benefit from S100P-targeted therapies.
Keywords: E-cadherin; Gastric cancer; Prognosis; S100P; Survival.