In this study, fractal geometry was applied to characterize the complexity of the root system morphology of wheat plants under the exposure of heavy metals, namely cadmium (Cd), copper (Cu) and zinc (Zn). We proposed a measure called, relative complexity index (RCI), a ratio based on fractal dimension (FD) before and after exposure to heavy metals. FDs were calculated by box-counting method with digitized and skeletonized images of roots of wheat plants cultivated in hydroculture system. RCI, and relative weight were mesuared under different concentrations of Cd (0.001, 0.01 and 0.05 mM), Cu (0.016, 0.4 and 1.2 mM) and Zn (0.3 and 0.75 mM). Results showed significant reduction of RCI for Cd stress with 0.01 and 0.05, all Cu concentrations and promotion at all zinc concentrations. In comparison, no statistically significant changes were found in conventional relative weight measurement at low concentrations of Cu, Cd and Zn. RCI were more sensitive and were reliable in reflecting the influence of heavy metals than the conventional measure. These results imply that RCI can be an effective measure of the negative and positive effects of heavy metals on the development of complexity of root system under heavy metal exposures.
Keywords: complexity; fractal analysis; heavy metals Cd, Cu, Zn; root system; wheat.
© 2019 The Japanese Society for Plant Cell and Molecular Biology.