Despite continuous retinal chaos, we perceive the world as stable and complete. This illusion is sustained over consecutive glances by reliance on statistical redundancies inherent in the visual environment. For instance, repeating the average size of a collection of differently sized items speeds visual search for a randomly located target regardless of trial-to-trial changes in local element size (Corbett & Melcher, 2014b). Here, we manipulate set size to investigate the potential role attention may play in these facilitative effects of statistical stability on visual search. Observers discriminated the left or right tilt of a Gabor target defined by a unique conjunction of orientation and spatial frequency in displays of Gabors with a stable or unstable mean size over successive trials. When set size was manipulated over sequences of successive trials, but held constant within a given sequence in Experiment 1, we observed distinct effects of statistical stability and attention, such that participants made faster correct responses as a function of stability and slower correct responses as a function of increasing set size. Replicating these main effects in Experiment 2, when set size was always unstable, provided converging evidence for discrete influences of statistical stability and attentional contributions to visual search. Overall, results support the proposal that our stable impressions of the surrounding environment and our abilities to attend salient events within that environment are distinctively governed by inherent statistical context and attentional processing demands.
Keywords: Attention; Perceptual averaging; Statistical stability; Visual search.