Background: Incisional hernia repair requires detailed anatomic knowledge. Regarding median subxiphoidal hernias, the proper preparation of the fatty triangle is challenging. To foster proficiency-based training, a cost-efficient model for open median retromuscular mesh repair resembling the human body was developed, including the main anatomical structures related to the procedure. The aim is to create and validate a high-fidelity model on open retromuscular mesh repair suitable for "training before doing".
Materials and methods: Different types of fabrics for imitation of connective tissue and 2-component silicones were used to construct the incisional hernia model. Sample size for validation of the model was determined by a triangular testing approach. Operations from six beginners and six experts were assessed by three blinded-raters. Reliability and construct-validity were evaluated on a behaviorally anchored rating scale (highest score: 4) for the criteria: "instrument use", "tissue handling", "near misses and errors", and "end-product quality".
Results: The model authentically mimicked an open median retromuscular mesh repair. Participants considered the procedure realistic. Reliability was excellent, ranging from 0.811 to 0.974 for "end-product quality", and "tissue handling" respectively. Construct-validity was confirmed with experts significantly outperforming beginners in the "use of instruments" (Mbeg. = 2.33, Mexp. = 3.94, p < 0.001), "tissue handling" (Mbeg. = 2.11, Mexp. = 3.72, p < 0.001), "near misses and errors" (Mbeg. = 2.67, Mexp. = 3.67, p < 0.001), and "end-product quality" (Mbeg. = 2.78, Mexp. = 3.72, p < 0.001). Criterion-validity revealed a paradox effect: beginners performed significantly better than experts (p < 0.05) when preparing the fatty triangle.
Conclusions: The model covers all relevant aspects involved in median-open retromuscular incisional hernia mesh repair. Performance differences between beginners and experts confirm construct-validity and thereby realism of the model. It enables to efficiently improve and practice technical skills of the demanding surgery.
Keywords: Fatty triangle; Incisional hernia repair; Retromuscular mesh repair; Simulation; Surgical model; Validation.