Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are used in various fields but raise concerns regarding human health and environmental consequences. Among PFASs, perfluorooctanoic acid (PFOA) and short-chain perfluoroalkyl carboxylic acids (SC PFCAs) are detectable in skin-contact consumer products and have dermal absorption potential. Here, we investigated the effects of dermal exposure to PFOA and SC PFCAs using in vitro and in vivo models. Human skin equivalents were topically treated with 0.25 mM and 2.5 mM PFOA and SC PFCAs (perfluoropentanoic acid, PFPeA; perfluorohexanoic acid, PFHxA; and perfluoroheptanoic acid, PFHpA) for 6 days, and cell viability, interleukin (IL)-1α, oxidative stress markers (malondialdehyde, MDA; and 8-hydroxydeoxyguanosine, 8-OHdG), and histopathology were examined. MDA levels were significantly higher in the PFASs groups than in controls. Compared with SC PFCAs, 2.5 mM PFOA caused more IL-1α (p < 0.001) release, decreased skin thickness and microscopic abnormalities. To evaluate systemic effects, Sprague Dawley (SD) rats were dermally treated with 250 and 1000 mg/kg PFHpA for 2 weeks and clinical and anatomic pathology were assessed. At 1000 mg/kg, 83% of the rats died, with severe ulcerative dermatitis at the application site. Adverse PFHpA-treated systemic changes were observed in the kidney, liver and testes, and histopathologic lesions such as renal tubular necrosis, hepatocellular necrosis, and germ cell degeneration were seen at 250 and 1000 mg/kg. Our study suggests that SC PFCAs have fewer effects on the skin than PFOA, but SC PFCAs can have adverse effects on major organs with systemic exposure at high concentrations.
Keywords: Dermal toxicity; Human skin equivalent (HSE); Per- and polyfluoroalkyl substances (PFASs); Perfluoroheptanoic acid (PFHpA); Perfluorooctanoic acid (PFOA); Short-chain perfluoroalkyl carboxylic acids (SC PFCAs).