The solid-solid (immobilized cellulase-insoluble cellulose) phase cellulose hydrolysis reaction is significant in cellulosic biomass conversion processes but hindered because of its low efficiency. Herein, a smart temperature-pH dual-responsive material (D-N-N material) was prepared to be used as a carrier for cellulase recovery. This D-N-N material could undergo reversible and switchable transitions between solution, hydrogel, and solid phases. The following results were demonstrated: 1) the hydrolytic degree of this strategy could be as high as that of free cellulase in buffer solution; 2) the cellulase could be encapsulated into the D-N-N hydrogel without significant leaching and most of the cellulase activity was retained after recycling for at least 10 batches; and 3) more than 95 % of the glucose inside the hydrogel could be extracted during the hydrogel-solid transition within 1 h, which can assist in the high-efficiency separation of cellulase from glucose. The results suggested that this strategy provides a feasible platform for efficient cellulose hydrolysis and could be applied to other bio-derived reactions.
Keywords: biomass; cellulase; cellulose hydrolysis; dual-responsive; phase transition.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.