Reprofiling of pyrimidine-based DAPK1/CSF1R dual inhibitors: identification of 2,5-diamino-4-pyrimidinol derivatives as novel potential anticancer lead compounds

J Enzyme Inhib Med Chem. 2020 Dec;35(1):311-324. doi: 10.1080/14756366.2019.1699554.

Abstract

Hybridization of reported weakly active antiproliferative hit 5-amino-4-pyrimidinol derivative with 2-anilino-4-phenoxypyrimidines suggests a series of 2,5-diamino-4-pyrimidinol derivatives as potential antiproliferative agents. Few compounds belonging to the proposed series were reported as CSF1R/DAPK1 inhibitors as anti-tauopathies. However, the correlation between CSF1R/DAPK1 signalling pathways and cancer progression provides motives to reprofile them against cancer therapy. The compounds were synthesised, characterized, and evaluated against M-NFS-60 cells and a kinase panel which bolstered predictions of their antiproliferative activity and suggested the involvement of diverse molecular targets. Compound 6e, the most potent in the series, showed prominent broad-spectrum antiproliferative activity inhibiting the growth of hematological, NSCLC, colon, CNS, melanoma, ovarian, renal, prostate and breast cancers by 84.1, 52.79, 72.15, 66.34, 66.48, 51.55, 55.95, 61.85, and 60.87%, respectively. Additionally, it elicited an IC50 value of 1.97 µM against M-NFS-60 cells and good GIT absorption with Pe value of 19.0 ± 1.1 × 10-6 cm/s (PAMPA-GIT). Molecular docking study for 6e with CSF1R and DAPK1 was done to help to understand the binding mode with both kinases. Collectively, compound 6e could be a potential lead compound for further development of anticancer therapies.

Keywords: CSF1R; DAPK1; PAMPA assay; Reprofiling; anticancer; kinase inhibitors.

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Death-Associated Protein Kinases / antagonists & inhibitors*
  • Death-Associated Protein Kinases / metabolism
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Humans
  • Molecular Docking Simulation
  • Molecular Structure
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Pyrimidines / chemical synthesis
  • Pyrimidines / chemistry
  • Pyrimidines / pharmacology*
  • Receptors, Granulocyte-Macrophage Colony-Stimulating Factor / antagonists & inhibitors*
  • Receptors, Granulocyte-Macrophage Colony-Stimulating Factor / metabolism
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents
  • CSF1R protein, human
  • Protein Kinase Inhibitors
  • Pyrimidines
  • Receptors, Granulocyte-Macrophage Colony-Stimulating Factor
  • DAPK1 protein, human
  • Death-Associated Protein Kinases

Grants and funding

This work was supported by the KIST Institutional programmes [Grant No. 2E29260] from Korea Institute of Science and Technology.