Promoter is an important functional elements of DNA sequences, which is in charge of gene transcription initiation. Recognizing promoter have important help for understanding the relative life phenomena. Based on the concept that promoter is mainly determined by its sequence and structure, a novel statistical physics model for predicting promoter in Escherichia coli K-12 is proposed. The total energies of DNA local structure of sequence segments in the three benchmark promoter sequence datasets, the sole prediction parameter, are calculated by using principles from statistical physics and information theory. The better results are obtained. And a web-server PhysMPrePro for predicting promoter is established at http://202.207.14.87:8032/bioinformation/PhysMPrePro/index.asp, so that other scientists can easily get their desired results by our web-server.
Keywords: Partition function; Position-correlation weight matrix (PCWM); Promoter recognition; Statistical physics model.
Copyright © 2019 Elsevier Inc. All rights reserved.