PiggyBac transposon system with polymeric gene carrier transfected into human T cells

Am J Transl Res. 2019 Nov 15;11(11):7126-7136. eCollection 2019.

Abstract

CAR-T cell-based immunotherapy has shown great promise in clinical trials for the treatment of hematological malignancies. The majority of these trials utilize retroviral and lentiviral vectors to introduce CAR transgene. In spite of its satisfactory efficiency, the concerns about the potential carcinogenicity and complicated synthesis procedure restrict widespread clinical applications of viral vectors. Recent studies show that transposon-based gene transfer is a safer and simpler non-viral approach for stable transgene expression. Here, we developed an in house made polymeric nanomicelles carrier for piggyBac (PB) transposon delivery to primary T lymphocytes. The properties, transfection efficiency and toxicity of this carrier was analyzed. Results indicated that nanomicelles produced in our study were stable and reduction-sensitive. These micelles can completely condense DNA and mediate transfection with efficiency of average 30.2% with high cell viability (> 80%). Furthermore, incorporating piggyBac transposase elements into polyplexes promoted persistent expression of the transgene (up to 55%). At the end of culture, CAR-T cells mainly exhibited memory phenotype and consisted of CD3+CD8+ T cells. The cytotoxicity of these CAR-T cells was average 17% at 20:1 ratio. In conclusion, polymeric nanomicelles provide a flexible and safe method for gene delivery to T lymphocytes.

Keywords: PiggyBac transposon; human T cells; polymeric nanomicelles.