Relief of talin autoinhibition triggers a force-independent association with vinculin

J Cell Biol. 2020 Jan 6;219(1):e201903134. doi: 10.1083/jcb.201903134.

Abstract

Talin, vinculin, and paxillin are core components of the dynamic link between integrins and actomyosin. Here, we study the mechanisms that mediate their activation and association using a mitochondrial-targeting assay, structure-based mutants, and advanced microscopy. As expected, full-length vinculin and talin are autoinhibited and do not interact with each other. However, contrary to previous models that propose a critical role for forces driving talin-vinculin association, our data show that force-independent relief of autoinhibition is sufficient to mediate their tight interaction. We also found that paxillin can bind to both talin and vinculin when either is inactive. Further experiments demonstrated that adhesions containing paxillin and vinculin can form without talin following integrin activation. However, these are largely deficient in exerting traction forces to the matrix. Our observations lead to a model whereby paxillin contributes to talin and vinculin recruitment into nascent adhesions. Activation of the talin-vinculin axis subsequently leads to the engagement with the traction force machinery and focal adhesion maturation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton
  • Animals
  • Cells, Cultured
  • Fibroblasts / cytology
  • Fibroblasts / metabolism*
  • Focal Adhesions / physiology*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Paxillin / physiology*
  • Protein Binding
  • Stress, Mechanical*
  • Talin / antagonists & inhibitors*
  • Talin / metabolism
  • Vinculin / physiology*

Substances

  • Paxillin
  • Pxn protein, mouse
  • Talin
  • Vcl protein, mouse
  • Tln1 protein, mouse
  • Vinculin