Radiosynthesis and Biological Evaluation of [18F]Triacoxib: A New Radiotracer for PET Imaging of COX-2

Mol Pharm. 2020 Jan 6;17(1):251-261. doi: 10.1021/acs.molpharmaceut.9b00986. Epub 2019 Dec 23.

Abstract

Inducible isozyme cyclooxygenase-2 (COX-2) is upregulated under acute and chronic inflammatory conditions, including cancer, wherein it promotes angiogenesis, tissue invasion, and resistance to apoptosis. Due to its high expression in various cancers, COX-2 has become an important biomarker for molecular imaging and therapy of cancer. Recently, our group applied in situ click chemistry for the identification of the highly potent and selective COX-2 inhibitor triacoxib. In this study, we present the radiosynthesis in vitro and in vivo radiopharmacological validation of [18F]triacoxib, a novel radiotracer for PET imaging of COX-2. Radiosynthesis of [18F]triacoxib was accomplished using copper-mediated late-stage radiofluorination chemistry. The radiosynthesis, including radio-HPLC purification, of [18F]triacoxib was accomplished within 90 min in decay-corrected radiochemical yields of 72% (n = 7) at molar activities exceeding 90 GBq/μmol. Cellular uptake and inhibition studies with [18F]triacoxib were carried out in COX-2 expressing HCA-7 cells. Cellular uptake of [18F]triacoxib in HCA-7 cells reached 25% radioactivity/mg protein after 60 min. Cellular uptake was reduced by 63% upon pretreatment with 0.1 mM celecoxib, and 90% of the radiotracer remained intact in vivo after 60 min p.i. in mice. [18F]Triacoxib was further evaluated in HCA-7 tumor-bearing mice using dynamic PET imaging, radiometabolite analysis, autoradiography, and immunohistochemistry. PET imaging revealed a favorable baseline radiotracer uptake in HCA-7 tumors (SUV60min = 0.76 ± 0.02 (n = 4)), which could be blocked by 20% through i.p. pretreatment with 2 mg of celecoxib. Autoradiography and immunohistochemistry experiments further the confirmed blocking of COX-2 in vivo. [18F]Triacoxib, whose nonradioactive analogue was identified through in situ click chemistry, is a novel radiotracer for PET imaging of COX-2 in cancer. Despite a substantial amount of nonspecific uptake in vivo, [18F]triacoxib displayed specific binding to COX-2 in vivo and reinforced the feasibility of optimal structure selection by in situ click chemistry. It remains to be elucidated how this novel radiotracer would perform in first-in-human studies to detect COX-2 with PET.

Keywords: 18F; cyclooxygenase-2 (COX-2); molecular imaging; positron emission tomography (PET).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Celecoxib / pharmacology
  • Cell Line, Tumor
  • Click Chemistry
  • Cyclooxygenase 2 / metabolism*
  • Cyclooxygenase 2 Inhibitors / chemical synthesis
  • Cyclooxygenase 2 Inhibitors / chemistry*
  • Fluorine Radioisotopes / chemistry
  • Humans
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Neoplasms / diagnostic imaging*
  • Positron-Emission Tomography*
  • Radiopharmaceuticals / chemistry*
  • Tissue Distribution
  • Transplantation, Heterologous

Substances

  • Cyclooxygenase 2 Inhibitors
  • Fluorine Radioisotopes
  • Radiopharmaceuticals
  • Cyclooxygenase 2
  • Celecoxib