Parenting is essential for survival and wellbeing in many species. Since it can be performed with little prior experience and entails considerable sacrifices without immediate benefits for the caregiver, this behavior is likely orchestrated by evolutionarily shaped, hard-wired neural circuits. At the same time, experience, environmental factors and internal state also make parenting highly malleable. These characteristics have made parenting an attractive paradigm for linking complex, naturalistic behavior to its underlying neural mechanisms. Recent work - based on the identification of critical neuronal populations and improved tools for dissecting neural circuits - has uncovered novel functional principles and challenged simplistic models of parenting control. A better understanding of the neural basis of parenting will provide crucial clues to how complex behaviors are organized at the level of cells, circuits and computations. Here I review recent progress, discuss emerging functional principles of parental circuits, and outline future opportunities and challenges.
Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved.