An adaptive term proximity based rocchio's model for clinical decision support retrieval

BMC Med Inform Decis Mak. 2019 Dec 12;19(Suppl 9):251. doi: 10.1186/s12911-019-0986-6.

Abstract

Background: In order to better help doctors make decision in the clinical setting, research is necessary to connect electronic health record (EHR) with the biomedical literature. Pseudo Relevance Feedback (PRF) is a kind of classical query modification technique that has shown to be effective in many retrieval models and thus suitable for handling terse language and clinical jargons in EHR. Previous work has introduced a set of constraints (axioms) of traditional PRF model. However, in the feedback document, the importance degree of candidate term and the co-occurrence relationship between a candidate term and a query term. Most methods do not consider both of these factors. Intuitively, terms that have higher co-occurrence degree with a query term are more likely to be related to the query topic.

Methods: In this paper, we incorporate original HAL model into the Rocchio's model, and propose a new concept of term proximity feedback weight. A HAL-based Rocchio's model in the query expansion, called HRoc, is proposed. Meanwhile, we design three normalization methods to better incorporate proximity information to query expansion. Finally, we introduce an adaptive parameter to replace the length of sliding window of HAL model, and it can select window size according to document length.

Results: Based on 2016 TREC Clinical Support medicine dataset, experimental results demonstrate that the proposed HRoc and HRoc_AP models superior to other advanced models, such as PRoc2 and TF-PRF methods on various evaluation metrics. Among them, compared with the Proc2 and TF-PRF models, the MAP of our model is increased by 8.5% and 12.24% respectively, while the F1 score of our model is increased by 7.86% and 9.88% respectively.

Conclusions: The proposed HRoc model can effectively enhance the precision and the recall rate of Information Retrieval and gets a more precise result than other models. Furthermore, after introducing self-adaptive parameter, the advanced HRoc_AP model uses less hyper-parameters than other models while enjoys an equivalent performance, which greatly improves the efficiency and applicability of the model and thus helps clinicians to retrieve clinical support document effectively.

Keywords: Clinical retrieval; Pseudo relevance feedback; Query expansion; Term proximity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Decision Support Systems, Clinical*
  • Feedback
  • Information Storage and Retrieval*
  • Models, Theoretical*