The non-steroidal anti-inflammatory drugs (NSAIDs) ibuprofen and diclofenac are highly prescribed worldwide and their presence in aquatic system may pose a potential risk to aquatic organisms. Here, we systematically assessed their cardiovascular disruptive effects in zebrafish (Danio rerio) at environmentally relevant concentrations between 0.04 and 25.0 μg/L. Ibuprofen significantly increased the cardiac outputs of zebrafish embryos at actual concentrations of 0.91, 4.3 and 21.9 μg/L. It up-regulated the blood cell velocity, total blood flow and down-regulated the blood cell density at concentrations of 4.3 μg/L and higher. In comparison, diclofenac led to inhibition of spontaneous muscle contractions and decreased hatching rate of zebrafish embryos at the highest concentration (24.1 μg/L), while it had negligible effects on the cardiac physiology and hemodynamics. Transcriptional analysis of biomarker genes involved in cardiovascular physiology, such as the significantly up-regulated nppa and nkx2.5 expressions response to ibuprofen but not to diclofenac, is consistent with these observations. In addition, both ibuprofen and diclofenac altered the morphology of intersegmental vessels at high concentrations. Our results revealed unexpected cardiovascular functional alterations of NSAIDs to fish at environmental or slightly higher than surface water concentrations and thus provided novel insights into the understanding of their potential environmental risks.
Keywords: Cardiac physiology; Diclofenac; Hemodynamics; Ibuprofen; Zebrafish.
Copyright © 2019. Published by Elsevier Ltd.