Purpose: To quantify morphologic photoreceptor integrity during anti-vascular endothelial growth factor (anti-VEGF) therapy of neovascular age-related macular degeneration and correlate these findings with disease morphology and function.
Methods: This presents a post hoc analysis on spectral-domain optical coherence tomography data of 185 patients, acquired at baseline, Month 3, and Month 12 in a multicenter, prospective trial. Loss of the ellipsoid zone (EZ) was manually quantified in all optical coherence tomography volumes. Intraretinal cystoid fluid, subretinal fluid (SRF), and pigment epithelial detachments were automatically segmented in the full volumes using validated deep learning methods. Spatiotemporal correlation of fluid markers with EZ integrity as well as bivariate analysis between EZ integrity and best-corrected visual acuity was performed.
Results: At baseline, EZ integrity was predominantly impaired in the fovea, showing progressive recovery during anti-vascular endothelial growth factor therapy. Topographic analysis at baseline revealed EZ integrity to be more likely intact in areas with SRF and vice versa. Moreover, we observed a correlation between EZ integrity and resolution of SRF. Foveal EZ integrity correlated with best-corrected visual acuity at all timepoints.
Conclusion: Improvement of EZ integrity during anti-VEGF therapy of neovascular age-related macular degeneration occurred predominantly in the fovea. Photoreceptor integrity correlated with best-corrected visual acuity. Ellipsoid zone integrity was preserved in areas of SRF and showed deterioration upon SRF resolution.