[Characteristics and Source Apportionment of Ambient VOCs in Spring in Zhengzhou]

Huan Jing Ke Xue. 2019 Oct 8;40(10):4372-4381. doi: 10.13227/j.hjkx.201902075.
[Article in Chinese]

Abstract

Ambient volatile organic compounds (VOCs) samples were collected at five sites in Zhengzhou during the spring of 2018. VOCs concentrations, the ozone formation potential (OFP), the aerosol formation potential (AFP), and source apportionment using a positive matrix factorization (PMF) model were studied based on chemical composition analysis. The results showed that the averaged concentration of VOCs in Zhengzhou during spring was (30.66±13.60)×10-9, of which the proportion of alkanes was the highest (35.3%) followed by oxygenated VOCs (OVOCs, 25.3%), halocarbons (24.1%), aromatics (10.0%), and alkenes (5.2%). The total OFP was 195.53 μg·m-3 and the contributions of alkanes, alkenes, aromatics, halocarbons, and OVOCs were 25.6%, 17.8%, 38.9%, 5.8%, and 11.9%, respectively. The total AFP was 0.95 μg·m-3 with an 87.6% contribution from aromatics and 12.4% from alkanes. The correlation between major species showed that pentane, isopentane, benzene, and toluene in Qinlinglu (QLL) site and Jingkaiqu (JKQ) site were greatly influenced by motor vehicles, but these were mainly influenced by combustion sources in Zhengzhou University (ZZU) site. The five factors that were identified by the PMF model were vehicle and liquefied petroleum gas (LPG) volatilization source (30.5%), solvent coating source (27.3%), industrial process source (22.1%), aging air mass (14.4%), and biogenic source (5.7%).

Keywords: aerosol formation potential (AFP); ozone; ozone formation potential (OFP); positive matrix factorization (PMF); volatile organic compounds (VOCs).

Publication types

  • English Abstract