Objective: We evaluated the effects of photobiomodulation (PBM), mandibular advancement (MA), and the combination of both treatments (PBM+MA) on condylar growth, by the analysis of cartilage and bone formation, fibrillar collagen deposition, proteoglycan content, cell proliferation, and clastic cell index (CCI). Methods: Forty male Wistar rats were randomly assigned to CONTROL, PBM, positive control-MA, and PBM+MA groups. The appliance was worn 10 h/day. Laser was irradiated bilaterally on mandibular condyles in 8 alternate days (1 irradiation point per condyle) using the following parameters: 780 nm, 10 J/cm2, 40 mW, 1 W/cm2, 10 sec/point, 0.4 J/point, and cumulative dose per point: 3.2 J. PBM+MA received both treatments simultaneously. After 15 days, the animals were euthanized and the condyles dissected and embedded in paraffin. Histological sections from the intermediate portion of the condyle were used for morphometric analysis. The relative frequency (%) of fibrillar collagens was determined in sections stained with picrosirius red-hematoxylin under polarized light or Gömöri's method for reticular fibers. Proteoglycan content was evaluated by computerized photocolorimetric analysis. CCI was determined by tartrate-resistant acid phosphatase (TRAP), and proliferating cell nuclear antigen (PCNA) was detected by immunohistochemistry. Results: PBM and MA influenced condylar cartilage thickeness and matrix deposition, but none of the treatments affected significantly the area of the condyle. CCI were not influenced by the treatments, but clastic cells distribution was influenced by MA and PBM+MA treatments. There was no significant difference in proliferating cells among the groups. Conclusions: This study demonstrated that PBM and MA stimulates matrix deposition and cartilage thickening in the mandibular condyle, but was not able to demonstrate a synergistic effect between the treatments. Additional studies should be conducted to evaluate the possible synergistic effect between PBM and MA.
Keywords: bone; cartilage; collagen; low-level laser therapy; mandibular advancement; mandibular condyle.