Neurotensin receptor 1 (NTSR1) is overexpressed in most human pancreatic ductal adenocarcinomas. It makes it an attractive target for the development of pancreatic cancer imaging agents. In this study, we sought to develop a bimodal positron emission tomography (PET)/fluorescent imaging agent capable of specifically targeting these receptors. Starting from the structure of a known NTSR1 agonist, a series of tracers were synthesized, radiometalated with gallium-68, and evaluated in vitro and in vivo, in mice bearing an AsPC-1 xenograft. PET imaging allowed us to identify the compound [68Ga]Ga-NODAGA-Lys(Cy5**)-AEEAc-[Me-Arg8,Tle12]-NT(7-13) as the one with the most promising biodistribution profile, characterized by high tumor uptake (2.56 ± 0.97%ID/g, 1 h post-injection) and rapid elimination from nontargeted organs, through urinary excretion. Fluorescence imaging gave similar results. On this basis, fluorescence-guided resection of tumor masses was successfully carried out on a preclinical model.