Objectives: To evaluate the independent clinical impact of stent structural features in a large cohort of patients undergoing unprotected left main (ULM) or coronary bifurcation percutaneous coronary intervention (PCI) with a range of very thin strut stents.
Background: Clinical impact of structural features of contemporary stents remains to be defined.
Methods: All consecutive patients enrolled in the veRy thin stents for patients with left mAIn or bifurcatioN in real life (RAIN) registry were included. The following stent structural features were studied: antiproliferative drugs (everolimus vs. sirolimus vs. zotarolimus), strut material (platinum-chromium vs. cobalt-chromium), polymer (bioresorbable vs. durable), number of crowns (<8 vs. ≥8) and number of connectors (<3 vs. ≥3). For small diameter stents (≤2.5 mm), struct thickness (74 vs. 80/81 μm) was also tested. Target lesion failure (TLF), a composite of target lesion revascularization and stent thrombosis, was the primary endpoint. Multivariate analysis was performed with Cox regression models.
Results: Out of 2,707 patients, 110 (4.1%) experienced a TLF event after 16 months (12-18). After adjustment for confounders, an increased number of connectors (adjusted hazard ratio [adj-HR] 0.62, 95% confidence interval (CI) 0.39-0.99, p = .04) reduced risk of TLF, driven by stents with ≥2.5 mm diameter (HR 0.54, 95% CI 0.32-0.93, p = .02). This independent relationship was lost for stents with diameter <2.5 mm, where only strut thickness appeared to impact. Conversely, no independent relationship of polymer type, number of crowns, and the specific limus-family eluted drug with outcomes was observed.
Conclusions: Among a range of contemporary very thin stent models, an increased number of connectors improved device-related outcomes in this investigated high-risk procedural setting.
© 2019 Wiley Periodicals, Inc.