Observation of 9-Fold Coordinated Amorphous TiO2 at High Pressure

J Phys Chem Lett. 2020 Jan 16;11(2):374-379. doi: 10.1021/acs.jpclett.9b03378. Epub 2019 Dec 26.

Abstract

Knowledge of the structure in amorphous dioxides is important in many fields of science and engineering. Here we report new experimental results of high-pressure polyamorphism in amorphous TiO2 (a-TiO2). Our data show that the Ti coordination number (CN) increases from 7.2 ± 0.3 at ∼16 GPa to 8.8 ± 0.3 at ∼70 GPa and finally reaches a plateau at 8.9 ± 0.3 at ≲86 GPa. The evolution of the structural changes under pressure is rationalized by the ratio (γ) of the ionic radius of Ti to that of O. It appears that the CN ≈ 9 plateau correlates with the two 9-fold coordinated polymorphs (cotunnite, Fe2P) with different γ values. This CN-γ relationship is compared with those of a-SiO2 and a-GeO2, displaying remarkably consistent behavior between CN and γ. The unified CN-γ relationship may be generally used to predict the compression behavior of amorphous AO2 compounds under extreme conditions.